首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   689篇
  免费   91篇
  2021年   4篇
  2020年   4篇
  2019年   12篇
  2018年   10篇
  2017年   10篇
  2016年   17篇
  2015年   36篇
  2014年   27篇
  2013年   24篇
  2012年   45篇
  2011年   39篇
  2010年   29篇
  2009年   24篇
  2008年   27篇
  2007年   29篇
  2006年   28篇
  2005年   28篇
  2004年   28篇
  2003年   23篇
  2002年   25篇
  2001年   24篇
  2000年   20篇
  1999年   13篇
  1998年   13篇
  1997年   13篇
  1996年   11篇
  1995年   6篇
  1994年   8篇
  1993年   12篇
  1992年   13篇
  1991年   19篇
  1990年   12篇
  1989年   10篇
  1988年   10篇
  1987年   10篇
  1986年   9篇
  1985年   14篇
  1984年   8篇
  1983年   10篇
  1982年   8篇
  1980年   8篇
  1979年   9篇
  1978年   7篇
  1977年   3篇
  1976年   4篇
  1975年   3篇
  1974年   6篇
  1973年   3篇
  1971年   3篇
  1968年   3篇
排序方式: 共有780条查询结果,搜索用时 31 毫秒
31.
Nitric oxide (NO) plays a significant role in the development of diabetic nephropathy. We investigated the effects of an antioxidant, carnosine, on streptozotocin (STZ)-induced renal injury in diabetic rats. We used four groups of eight rats: group 1, control; group 2, carnosine treated; group 3, untreated diabetic; group 4, carnosine treated diabetic. Kidneys were removed and processed, and sections were stained with periodic acid-Schiff (PAS) and subjected to eNOS immunohistochemistry. Examination by light microscopy revealed degenerated glomeruli, thickened basement membrane and glycogen accumulation in the tubules of diabetic kidneys. Carnosine treatment prevented the renal morphological damage caused by diabetes. Moreover, administration of carnosine decreased somewhat the oxidative damage of diabetic nephropathy. Appropriate doses of carnosine might be a useful therapeutic option to reduce oxidative stress and associated renal injury in diabetes mellitus.  相似文献   
32.
The food industry is constantly striving to develop new products to fulfil the ever changing demands of consumers and the strict requirements of regulatory agencies. For foods based on microbial fermentation, this pushes the boundaries of microbial performance and requires the constant development of new starter cultures with novel properties. Since the use of ingredients in the food industry is tightly regulated and under close scrutiny by consumers, the use of recombinant DNA technology to improve microbial performance is currently not an option. As a result, the focus for improving strains for microbial fermentation is on classical strain improvement methods. Here we review the use of these techniques to improve the functionality of lactic acid bacteria starter cultures for application in industrial-scale food production. Methods will be described for improving the bacteriophage resistance of specific strains, improving their texture forming ability, increasing their tolerance to stress and modulating both the amount and identity of acids produced during fermentation. In addition, approaches to eliminating undesirable properties will be described. Techniques include random mutagenesis, directed evolution and dominant selection schemes.  相似文献   
33.

Background  

Lignin and hemicelluloses are the major components limiting enzyme infiltration into cell walls. Determination of the topochemical distribution of lignin and aromatics in sugar cane might provide important data on the recalcitrance of specific cells. We used cellular ultraviolet (UV) microspectrophotometry (UMSP) to topochemically detect lignin and hydroxycinnamic acids in individual fiber, vessel and parenchyma cell walls of untreated and chlorite-treated sugar cane. Internodes, presenting typical vascular bundles and sucrose-storing parenchyma cells, were divided into rind and pith fractions.  相似文献   
34.
Product release is partially rate determining in the isomerization reaction catalyzed by Triosephosphate Isomerase, the conversion of dihydroxyacetone phosphate to D-glyceraldehyde 3-phosphate, probably because an active-site loop movement is necessary to free the product from confinement in the active-site. The timescale of the catalytic loop motion and of ligand release were studied using 19F and 31P solution-state NMR. A 5'-fluorotryptophan was incorporated in the loop N-terminal hinge as a reporter of loop motion timescale. Crystallographic studies confirmed that the structure of the fluorinated enzyme is indistinguishable from the wild-type; the fluorine accepts a hydrogen bond from water and not from a protein residue, with minimal perturbation to the flexible loop stability. Two distinct loop conformations were observed by 19F NMR. Both for unligated (empty) and ligated enzyme samples a single species was detected, but the chemical shifts of these two distinct species differed by 1.2 ppm. For samples in the presence of subsaturating amounts of a substrate analogue, glycerol 3-phosphate, both NMR peaks were present, with broadened lineshapes at 0 degrees C. In contrast, a single NMR peak representing a rapid average of the two species was observed at 30 degrees C. We conclude that the rate of loop motion is less than 1400 s(-1) at 0 degrees C and more than 1400 s(-1) at 30 degrees C. Ligand release was studied under similar sample conditions, using 31P NMR of the phosphate group of the substrate analogue. The rate of ligand release is less than 1000 s(-1) at 0 degrees C and more than 1000 s(-1) at 30 degrees C. Therefore, loop motion and product release are probably concerted and likely to represent a rate limiting step for chemistry.  相似文献   
35.
McMahon  S.S.  McDermott  K.W. 《Brain Cell Biology》2001,30(9-10):821-828
The mechanisms that control the production and differentiation of glial cells during development are difficult to unravel because of displacement of precursor cells from their sites of origin to their permanent location. The two main neuroglial cells in the rat spinal cord are oligodendrocytes and astrocytes. Considerable evidence supports the view that oligodendrocytes in the spinal cord are derived from a region of the ventral ventricular zone (VZ). Some astrocytes, at least, may arise from radial glia. In this study a 5-Bromo-2′-deoxyuridine (BrdU) incorporation assay was used to identify proliferating cells and examine the location of proliferating glial precursor cells in the embryonic spinal cord at different times post BrdU incorporation. In this way the migration of proliferating cells into spinal cord white matter could be followed. At E14, most of the proliferating cells in the periventricular region were located dorsally and these cells were probably proliferating neuronal precursors. At E16 and E18, the majority of the proliferating cells in the periventricular region were located ventrally. In the white matter the number of proliferating cells increased as the animals increased in age and much of this proliferation occurred locally. BrdU labelling showed that glial precursor cells migrate from their ventral and dorsal VZ birth sites to peripheral regions of the cord. Furthermore although the majority of proliferating cells in the spinal cord at E16 and E18 were located in the ventral periventricular region, some proliferating cells remained in the dorsal VZ region of the cord.  相似文献   
36.
Control of protein synthesis is critical to both cell growth and proliferation. The mammalian target of rapamycin (mTOR) integrates upstream growth, proliferation, and survival signals, including those transmitted via ERK1/2 and Akt, to regulate the rate of protein translation. The angiotensin AT1 receptor has been shown to activate both ERK1/2 and Akt in arrestin-based signalsomes. Here, we examine the role of arrestin-dependent regulation of ERK1/2 and Akt in the stimulation of mTOR-dependent protein translation by the AT1 receptor using HEK293 and primary vascular smooth muscle cell models. Nascent protein synthesis stimulated by both the canonical AT1 receptor agonist angiotensin II (AngII), and the arrestin pathway-selective agonist [Sar1-Ile4-Ile8]AngII (SII), is blocked by shRNA silencing of βarrestin1/2 or pharmacological inhibition of Akt, ERK1/2, or mTORC1. In HEK293 cells, SII activates a discrete arrestin-bound pool of Akt and promotes Akt-dependent phosphorylation of mTOR and its downstream effector p70/p85 ribosomal S6 kinase (p70/85S6K). In parallel, SII-activated ERK1/2 helps promote mTOR and p70/85S6K phosphorylation, and is required for phosphorylation of the known ERK1/2 substrate p90 ribosomal S6 kinase (p90RSK). Thus, arrestins coordinate AT1 receptor regulation of ERK1/2 and Akt activity and stimulate protein translation via both Akt-mTOR-p70/85S6K and ERK1/2-p90RSK pathways. These results suggest that in vivo, arrestin pathway-selective AT1 receptor agonists may promote cell growth or hypertrophy through arrestin-mediated mechanisms despite their antagonism of G protein signaling.  相似文献   
37.
38.
The kinase suppressor of Ras (KSR) is a loss-of-function allele that suppresses the rough eye phenotype of activated Ras in Drosophila and the multivulval phenotype of activated Ras in Caenorhabditis elegans. The physiological role of mammalian KSR is not known. We examined the mechanisms regulating the phosphorylation of this putative kinase in mammalian cells. Wild-type mouse KSR and a mutated KSR protein predicted to create a kinase-dead protein are phosphorylated identically in intact cells and in the immune complex. Phosphopeptide sequencing identified 10 in vivo phosphorylation sites in KSR, all of which reside in the 539 noncatalytic amino terminal amino acids. Expression of the amino terminal portion of KSR alone demonstrated that it was phosphorylated in the intact cell and in an immune complex in a manner indistinguishable from that of intact KSR. These data demonstrate that the kinase domain of KSR is irrelevant to its phosphorylation state and suggest that the phosphorylation of KSR and its association with a distinct set of kinases may affect intracellular signaling.  相似文献   
39.
40.
The gltA gene, encoding Sinorhizobium meliloti 104A14 citrate synthase, was isolated by complementing an Escherichia coli gltA mutant. The S. meliloti gltA gene was mutated by inserting a kanamycin resistance gene and then using homologous recombination to replace the wild-type gltA with the gltA::kan allele. The resulting strain, CSDX1, was a glutamate auxotroph, and enzyme assays confirmed the absence of a requirement for glutamate. CSDX1 did not grow on succinate, malate, aspartate, pyruvate, or glucose. CSDX1 produced an unusual blue fluorescence on medium containing Calcofluor, which is different from the green fluorescence found with 104A14. High concentrations of arabinose (0.4%) or succinate (0. 2%) restored the green fluorescence to CSDX1. High-performance liquid chromatography analyses showed that CSDX1 produced partially succinylated succinoglycan. CSDX1 was able to form nodules on alfalfa, but these nodules were not able to fix nitrogen. The symbiotic defect of a citrate synthase mutant could thus be due to disruption of the infection process or to the lack of energy generated by the tricarboxylic acid cycle.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号